b - talnakerfisgrunnur
d n - n-nsta tölustafurinn
n - getur byrjað á neikvæðri tölu ef talan hefur brothluta.
N +1 - fjöldi stafa
Tvöföld tölur nota aðeins 0 og 1 tölustaf.
B táknar tvöfalt forskeyti.
10101 2 = 10101B = 1 × 2 4 + 0 × 2 3 + 1 × 2 2 + 0 × 2 1 + 1 × 2 0 = 16 + 4 + 1 = 21
10111 2 = 10111B = 1 × 2 4 + 0 × 2 3 + 1 × 2 2 + 1 × 2 1 + 1 × 2 0 = 16 + 4 + 2 + 1 = 23
100011 2 = 100011B = 1 × 2 5 + 0 × 2 4 + 0 × 2 3 + 0 × 2 2 + 1 × 2 1 + 1 × 2 0 = 32 + 2 + 1 = 35
Octal tölur nota tölustafi frá 0..7.
27 8 = 2 × 8 1 + 7 × 8 0 = 16 + 7 = 23
30 8 = 3 × 8 1 + 0 × 8 0 = 24
4307 8 = 4 × 8 3 + 3 × 8 2 + 0 × 8 1 + 7 × 8 0 = 2247
Tugatölur nota tölustafi frá 0..9.
Þetta eru venjulegu tölurnar sem við notum.
2538 10 = 2 × 10 3 + 5 × 10 2 + 3 × 10 1 + 8 × 10 0
Hex tölur nota tölustafi frá 0..9 og A..F.
H táknar hex forskeyti.
28 16 = 28H = 2 × 16 1 + 8 × 16 0 = 40
2F 16 = 2FH = 2 × 16 1 + 15 × 16 0 = 47
BC12 16 = BC12H = 11 × 16 3 + 12 × 16 2 + 1 × 16 1 + 2 × 16 0 = 48146
Tugastafur Grunn-10 |
Tvöfaldur Grunn-2 |
Octal Grunn-8 |
Hexadecimal Grunn-16 |
---|---|---|---|
0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 |
2 | 10 | 2 | 2 |
3 | 11 | 3 | 3 |
4 | 100 | 4 | 4 |
5 | 101 | 5 | 5 |
6 | 110 | 6 | 6 |
7 | 111 | 7 | 7 |
8 | 1000 | 10 | 8 |
9 | 1001 | 11 | 9 |
10 | 1010 | 12 | A |
11 | 1011 | 13 | B |
12 | 1100 | 14 | C |
13 | 1101 | 15 | D |
14 | 1110 | 16 | E |
15 | 1111 | 17 | F |
16 | 10000 | 20 | 10 |
17 | 10001 | 21 | 11 |
18 | 10010 | 22 | 12 |
19 | 10011 | 23 | 13 |
20 | 10100 | 24 | 14 |
21 | 10101 | 25 | 15 |
22 | 10110 | 26 | 16 |
23 | 10111 | 27 | 17 |
24 | 11000 | 30 | 18 |
25 | 11001 | 31 | 19 |
26 | 11010 | 32 | 1A |
27 | 11011 | 33 | 1B |
28 | 11100 | 34 | 1C |
29 | 11101 | 35 | 1D |
30 | 11110 | 36 | 1E |
31 | 11111 | 37 | 1F |
32 | 100000 | 40 | 20 |
Advertising