ఘాతాంకాలను విభజించడం

ఘాతాంకాలను ఎలా విభజించాలి.

ఘాతాంకాలను ఒకే బేస్ తో విభజించడం

ఒకే బేస్ ఉన్న ఘాతాంకాల కోసం, మేము ఘాతాంకాలను తీసివేయాలి:

a n / a m = a nm

ఉదాహరణ:

2 6 /2 3 = 2 6-3 = 2 3 = 2⋅2⋅2 = 8

ఘాతాంకాలను వేర్వేరు స్థావరాలతో విభజించడం

స్థావరాలు భిన్నంగా ఉన్నప్పుడు మరియు a మరియు b యొక్క ఘాతాంకాలు ఒకేలా ఉన్నప్పుడు, మనం మొదట a మరియు b లను విభజించవచ్చు:

a n / b n = ( a / b ) n

ఉదాహరణ:

6 3 /2 3 = (6/2) 3 = 3 3 = 3⋅3⋅3 = 27

 

స్థావరాలు మరియు ఘాతాంకాలు భిన్నంగా ఉన్నప్పుడు మేము ప్రతి ఘాతాంకాన్ని లెక్కించి, ఆపై విభజించాలి:

a n / b m

ఉదాహరణ:

6 2 /3 3 = 36/27 = 1.333

ప్రతికూల ఘాతాంకాలను విభజించడం

ఒకే బేస్ ఉన్న ఘాతాంకాల కోసం, మేము ఘాతాంకాలను తీసివేయవచ్చు:

a -n / a -m = a -n- ( -m ) = a m-n

ఉదాహరణ:

2 - 3 /2 - 5 = 2 5 - 3 = 2 2 = 2⋅2 = 4

 

స్థావరాలు భిన్నంగా ఉన్నప్పుడు మరియు a మరియు b యొక్క ఘాతాంకాలు ఒకేలా ఉన్నప్పుడు, మనం మొదట a మరియు b లను గుణించవచ్చు:

a -n / b -n = ( a / b ) -n = 1 / ( a / b ) n = ( b / a ) n

ఉదాహరణ:

3 - 2 /4 - 2 = (4/3) 2 = 1.7778

 

స్థావరాలు మరియు ఘాతాంకాలు భిన్నంగా ఉన్నప్పుడు మేము ప్రతి ఘాతాంకాన్ని లెక్కించి, ఆపై విభజించాలి:

a - n / b - m = b m / a n

ఉదాహరణ:

3 - 2 /4 - 3 = 4 3 /3 2 = 64/9 = 7.111

భిన్నాలను ఘాతాంకాలతో విభజించడం

భిన్నాలను ఒకే భిన్న బేస్ తో ఘాతాంకాలతో విభజించడం:

( a / b ) n / ( a / b ) m = ( a / b ) nm

ఉదాహరణ:

(4/3) 3 / (4/3) 2 = (4/3) 3-2 = (4/3) 1 = 4/3 = 1.333

 

భిన్నాలను ఒకే ఘాతాంకంతో ఘాతాంకాలతో విభజించడం:

( a / b ) n / ( c / d ) n = (( a / b ) / ( c / d )) n = (( a⋅d / b⋅c )) n

ఉదాహరణ:

(4/3) 3 / (3/5) 3 = ((4/3) / (3/5)) 3 = ((4⋅5) / (3⋅3)) 3 = (20/9) 3 = 10.97

 

భిన్న స్థావరాలు మరియు ఘాతాంకాలతో ఘాతాంకాలతో భిన్నాలను విభజించడం:

( a / b ) n / ( c / d ) m

ఉదాహరణ:

(4/3) 3 / (1/2) 2 = 2.37 / 0.25 = 9.481

పాక్షిక ఘాతాంకాలను విభజించడం

పాక్షిక ఘాతాంకాలను ఒకే పాక్షిక ఘాతాంకంతో విభజించడం:

a n / m / b n / m = ( a / b ) n / m

ఉదాహరణ:

3 3/2 / 2 3/2 = (3/2) 3/2 = 1.5 3/2 = ( 1.5 3 ) = 3.375 = 1.837

 

పాక్షిక ఘాతాంకాలను ఒకే బేస్ తో విభజించడం:

a n / m / a k / j = a ( n / m) - (k / j)

ఉదాహరణ:

2 3/2 / 2 4/3 = 2 ( 3/2) - ( 4/3) = 2 (1/6) = 6 2 = 1.122

 

భిన్న ఘాతాంకాలను విభిన్న ఘాతాంకాలు మరియు భిన్నాలతో విభజించడం:

a n / m / b k / j

ఉదాహరణ:

2 3/2 / 2 4/3 = (2 3 ) / 3 (2 4 ) = 2.828 / 2.52 = 1.1222

ఎక్స్పోనెంట్లతో వేరియబుల్స్ విభజించడం

ఒకే బేస్ ఉన్న ఘాతాంకాల కోసం, మేము ఘాతాంకాలను తీసివేయవచ్చు:

x n / x m = x n-m

ఉదాహరణ:

x 5 / x 3 = ( x⋅x⋅x⋅x⋅x ) / ( x⋅x⋅x ) = x 5-3 = x 2

 


ఇది కూడ చూడు

Advertising

ఎక్స్పోనెంట్లు
రాపిడ్ టేబుల్స్