Normal distribution

Normalfördelning är en kontinuerlig sannolikhetsfördelning. Det kallas också Gaussisk distribution.

Den normala fördelningsdensitetsfunktionen f (z) kallas Bell Curve eftersom den har den form som liknar en bell.

Standard normalfördelningstabell används för att hitta området under f ( z ) -funktionen för att hitta sannolikheten för ett specificerat distributionsområde.

Normalfördelningsfunktion

När slumpmässig variabel X har normalfördelning,

Sannolikhetsdensitetsfunktionen och den kumulativa fördelningsfunktionen för normalfördelningen:

 

Sannolikhetsdensitetsfunktion (pdf)

Sannolikhetsdensitetsfunktionen ges av:

f_ {X} (x) = \ frac {1} {\ sigma \ sqrt {2 \ pi}} e ^ {- \ frac {(x- \ mu) ^ 2} {2 \ sigma ^ 2}}

X är den slumpmässiga variabeln.

μ är medelvärdet.

σ är standardavvikelsen (std).

e = 2,7182818 ... konstant.

π = 3,1415926 ... konstant.

 

Kumulativ fördelningsfunktion

Den kumulativa fördelningsfunktionen ges av:

F_ {X} (x) = \ frac {1} {\ sigma \ sqrt {2 \ pi}} \ int _ {- \ infty} ^ {x} e ^ {- \ frac {(y- \ mu) ^ 2 } {2 \ sigma ^ 2}} dy

X är den slumpmässiga variabeln.

μ är medelvärdet.

σ är standardavvikelsen (std).

e = 2,7182818 ... konstant.

π = 3,1415926 ... konstant.

Standard normalfördelningsfunktion

När

Då är sannolikhetsdensitetsfunktionen och den kumulativa fördelningsfunktionen för standardnormfördelningen:

Sannolikhetsdensitetsfunktion

Kumulativ fördelningsfunktion

Standard normalfördelningstabell

z Φ ( z ) φ ( z )
0,00 0,5000 0,3989
0,01 0,5040 0,3989
0,02 0,5080 0,3989
0,03 0,5120 0,3988
0,04 0,5160 0,3986
0,05 0,5199 0,3984
0,06 0,5239 0,3982
0,07 0,5279 0,3980
0,08 0,5319 0,3977
0,09 0,5359 0,3973
0,10 0,5398 0,3970
0,11 0,5438 0,3965
0,12 0,5478 0,3961
0,13 0,5517 0.3956
0,14 0,5557 0,3951
0,15 0,5596 0,3945
0,16 0,5636 0,3939
0,17 0,5675 0,3932
0,18 0,5714 0,3925
0,19 0,5753 0,3918
0,20 0,5793 0,3910
0,21 0,5832 0,3902
0,22 0,5871 0,3894
0,23 0,5910 0,3885
0,24 0,5948 0,3876
0,25 0,5987 0,3867
0,26 0,6026 0.3857
0,27 0,6064 0,3847
0,28 0,6103 0,3836
0,29 0,6141 0,3825
0,30 0,6179 0,3814
0,31 0,6217 0,3802
0,32 0,6255 0,3790
0,33 0,6293 0,3778
0,34 0,6331 0,3765
0,35 0,6368 0,3752
0,36 0,6406 0,3739
0,37 0,6443 0,3725
0,38 0,6480 0,3712
0,39 0,6517 0,3697
0,40 0,6554 0,3683
0,41 0,6591 0,3668
0,42 0,6628 0.3653
0,43 0,6664 0,3637
0,44 0,6700 0,3621
0,45 0,6736 0,3605
0,46 0,6772 0,3589
0,47 0,6808 0,3572
0,48 0,6844 0,3555
0,49 0,6879 0,3538
0,50 0,6915 0,3521
0,51 0,6950 0,3503
0,52 0,6985 0,3485
0,53 0,7019 0,3767
0,54 0,7054 0,3448
0,55 0,7088 0,3429
0,56 0,7123 0,3410
0,57 0,7157 0,3391
0,58 0,7190 0,3372
0,59 0,7224 0,3352
0,60 0,7257 0,3332
0,61 0,7291 0,3312
0,62 0,7324 0,3292
0,63 0,7357 0.3271
0,64 0,7389 0,3251
0,65 0,7422 0,3230
0,66 0,7454 0,3209
0,67 0,7486 0,3187
0,68 0,7517 0,3166
0,69 0,7549 0,3144
0,70 0,7580 0,3123
0,71 0,7611 0,3101
0,72 0,7642 0,3079
0,73 0,7673 0,3056
0,74 0,7704 0,3034
0,75 0,7734 0,3011
0,76 0,7764 0,2989
0,77 0,7794 0,2966
0,78 0,7823 0,2943
0,79 0,7852 0,2920
0,80 0,7881 0,2897
0,81 0,7910 0,2874
0,82 0,7939 0,2850
0,83 0,7967 0,2827
0,84 0,7995 0,2803
0,85 0,8023 0,2780
0,86 0,8051 0,2756
0,87 0,8078 0,2732
0,88 0,8106 0,2709
0,89 0,8133 0,2685
0,90 0,8159 0,2661
0,91 0,8186 0,2637
0,92 0,8212 0,2613
0,93 0,8238 0,2589
0,94 0,8264 0,2565
0,95 0,8289 0,2541
0,96 0,8315 0,2516
0,97 0,8340 0,2492
0,98 0,8365 0,2468
0,99 0,8389 0,2444
1,00 0,8413 0,2420
1,01 0,8438 0,2396
1,02 0,8461 0,2371
1,03 0,8485 0.2347
1,04 0,8508 0,2323
1,05 0,8531 0,2299
1,06 0,8554 0,2275
1,07 0,8577 0.2251
1,08 0,8599 0,2227
1,09 0,8621 0,2203
1.10 0,8643 0.2179
1.11 0,8665 0.2155
1.12 0,8686 0,2131
1.13 0,8708 0,2107
1.14 0,8729 0,2083
1.15 0,8749 0,2059
1.16 0,8770 0,2036
1.17 0,8790 0,2012
1.18 0,8810 0.1989
1.19 0,8830 0,1965
1.20 0,8849 0,1942
1.21 0,8869 0,1919
1.22 0,8888 0,1895
1.23 0,8907 0,1872
1.24 0,8925 0,1849
1.25 0,8944 0,1826
1.26 0,8962 0.1804
1.27 0,8980 0,1781
1.28 0,8997 0,1778
1.29 0,9015 0,1736
1.30 0,9032 0,1714
1.31 0,9049 0,1691
1.32 0,9066 0,1669
1.33 0,9082 0,1647
1,34 0,9099 0,1626
1,35 0,9115 0.1604
1.36 0,9131 0,1582
1,37 0,9147 0,1561
1,38 0,9162 0,1539
1,39 0,9177 0,1518
1,40 0,9192 0,1497
1,41 0,9207 0,1476
1,42 0,9222 0.1456
1,43 0,9236 0,1435
1,44 0,9251 0,1415
1.45 0,9265 0,1394
1,46 0,9279 0,1374
1,47 0,9292 0.1354
1,48 0,9306 0,1333
1,49 0,9319 0,1315
1,50 0,9332 0,1295
1,51 0,9345 0,1276
1,52 0,9357 0,1257
1,53 0,9370 0,1238
1,54 0,9382 0.1219
1,55 0,9394 0,1200
1,56 0,9406 0,1182
1,57 0,9418 0,1163
1,58 0,9429 0,1145
1,59 0,9441 0.1127
1,60 0,9452 0.1109
1,61 0,9463 0,1092
1,62 0,9474 0,1074
1,63 0,9484 0,1057
1,64 0,9495 0,1040
1,65 0,9505 0,1023
1,66 0,95515 0,1006
1,67 0,9525 0,0989
1,68 0,9535 0,0973
1,69 0,9545 0,0957
1,70 0,9554 0,0940
1,71 0,9564 0,0925
1,72 0,9573 0,0909
1,73 0,9582 0,0893
1,74 0,9591 0,0878
1,75 0,9599 0,0863
1,76 0,9608 0,0848
1,77 0,9616 0,0833
1,78 0,9625 0,0818
1,79 0,9633 0,0804
1,80 0,9641 0,0790
1,81 0,9649 0,0775
1,82 0,9656 0,0761
1,83 0,9664 0,0748
1,84 0,9671 0,0734
1,85 0,9678 0,0721
1,86 0,9686 0,0707
1,87 0,9693 0,0694
1,88 0,9699 0,0681
1,89 0,9706 0,0669
1,90 0,9713 0,0656
1,91 0,9719 0,0644
1,92 0,9726 0,0632
1,93 0,9732 0,0620
1,94 0,9738 0,0608
1,95 0,9744 0,0596
1,96 0,9750 0,0584
1,97 0,9756 0,0573
1.98 0,9661 0,0562
1,99 0,9767 0,0551
2.00 0,9772 0,0540
2,01 0,9778 0,0529
2,02 0,9783 0,0519
2,03 0,9788 0,0508
2,04 0,9793 0,0498
2,05 0,9798 0,0488
2,06 0,9803 0,0478
2,07 0,9808 0,0468
2,08 0,9812 0,0459
2,09 0,9817 0,0449
2.10 0,9821 0,0440
2.11 0,9826 0,0431
2.12 0,9830 0,0422
2.13 0,9834 0,0413
2.14 0,9838 0,0404
2.15 0,9842 0,0396
2.16 0,9846 0,0387
2.17 0,9850 0,0379
2.18 0,9854 0,0371
2.19 0,9857 0,0363
2.20 0,9861 0,0355
2.21 0,9864 0,0347
2.22 0,9868 0,0339
2.23 0,9871 0,0332
2.24 0,9875 0,0325
2,25 0,9878 0,0317
2.26 0,9881 0,0310
2.27 0,9884 0,0303
2.28 0,9887 0,0297
2.29 0,9890 0,0290
2.30 0,9893 0,0283
2.31 0,9896 0,0277
2.32 0,9898 0,0270
2.33 0,9901 0,0264
2.34 0,9904 0,0258
2,35 0,9906 0,0252
2,36 0,9909 0,0246
2,37 0,9911 0,0241
2,38 0,9913 0,0235
2,39 0,9916 0,0229
2.40 0,9918 0,0224
2,41 0,9920 0,0219
2,42 0,9922 0,0213
2,43 0,9925 0,0208
2,44 0,9927 0,0203
2,45 0,9929 0,0198
2,46 0,9931 0,0194
2,47 0,9932 0,0189
2,48 0,9934 0,0184
2,49 0,9936 0,0180
2,50 0,9938 0,0175
2,51 0,9940 0,0171
2,52 0,9941 0,0167
2,53 0,9943 0,0163
2,54 0,9945 0,0158
2,55 0,9946 0,0154
2,56 0,9948 0,0151
2,57 0,9949 0,0147
2,58 0,9951 0,0143
2,59 0,9952 0,0139
2,60 0,9953 0,0136
2.61 0,9955 0,0132
2,62 0,9956 0,0129
2,63 0,9957 0,0126
2.64 0,9959 0,0122
2,65 0,9960 0,0119
2,66 0,9961 0,0116
2,67 0,9962 0,0113
2,68 0,9963 0,0110
2,69 0,9964 0,0107
2,70 0,9965 0,0104
2.71 0,9966 0,0101
2,72 0,9967 0,0099
2,73 0,9968 0,0096
2,74 0,9969 0,0093
2,75 0,9970 0,0091
2,76 0,9971 0,0088
2,77 0,9972 0,0086
2,78 0,9973 0,0084
2,79 0,9974 0,0081
2,80 0,9974 0,0079
2.81 0,9975 0,0077
2.82 0,9976 0,0075
2.83 0,9977 0,0073
2.84 0,9977 0,0071
2,85 0,9978 0,0069
2,86 0,9979 0,0067
2.87 0,9979 0,0065
2,88 0,9980 0,0063
2.89 0,9981 0,0061
2,90 0,9981 0,0060
2,91 0,9982 0,0058
2,92 0,9982 0,0056
2,93 0,9983 0,0055
2,94 0,9984 0,0053
2,95 0,9984 0,0051
2,96 0,9985 0,0050
2,97 0,9985 0,0048
2,98 0,9986 0,0047
2,99 0,9986 0,0046
3.00 0,9987 0,0044
3.01 0,9987 0,0043
3.02 0,9987 0,0042
3.03 0,9988 0,0040
3.04 0,9988 0,0039
3.05 0,9989 0,0038
3.06 0,9989 0,0037
3,07 0,9989 0,0036
3,08 0,9990 0,0035
3,09 0,9990 0,0034
3.10 0,9990 0,0033
3.11 0,9991 0,0032
3.12 0,9991 0,0031
3.13 0,9991 0,0030
3.14 0,9992 0,0029
3.15 0,9992 0,0028
3.16 0,9992 0,0027
3.17 0,9992 0,0026
3.18 0,9993 0,0025
3.19 0,9993 0,0025
3.20 0,9993 0,0024
3.21 0,9993 0,0023
3.22 0,9994 0,0022
3.23 0,9994 0,0022
3.24 0,9994 0,0021
3.25 0,9994 0,0020
3.26 0,9994 0,0020
3.27 0,9995 0,0019
3.28 0,9995 0,0018
3.29 0,9995 0,0018
3.30 0,9995 0,0017
3.31 0,9995 0,0017
3.32 0,9995 0,0016
3.33 0,9996 0,0016
3.34 0,9996 0,0015
3.35 0,9996 0,0015
3.36 0,9996 0,0014
3.37 0,9996 0,0014
3.38 0,9996 0,0013
3.39 0,9997 0,0013
3.40 0,9997 0,0012
3.41 0,9997 0,0012
3.42 0,9997 0,0012
3,43 0,9997 0,0011
3.44 0,9997 0,0011
3.45 0,9997 0,0010
3,46 0,9997 0,0010
3.47 0,9998 0,0010
3.48 0,9998 0,0009
3.49 0,9998 0,0009
3,50 0,9998 0,0009
3.51 0,9998 0,0008
3.52 0,9998 0,0008
3.53 0,9998 0,0008
3.54 0,9998 0,0008
3.55 0,9998 0,0007
3.56 0,9998 0,0007
3,57 0,9998 0,0007
3,58 0,9998 0,0007
3.59 0,9998 0,0006
3,60 0,9998 0,0006
3,61 0,9998 0,0006
3,62 0,9999 0,0006
3,63 0,9999 0,0005
3,64 0,9999 0,0005
3,65 0,9999 0,0005
3,66 0,9999 0,0005
3,67 0,9999 0,0005
3,68 0,9999 0,0005
3,69 0,9999 0,0004
3,70 0,9999 0,0004
3,71 0,9999 0,0004
3,72 0,9999 0,0004
3,73 0,9999 0,0004
3,74 0,9999 0,0004
3,75 0,9999 0,0004
3,76 0,9999 0,0003
3,77 0,9999 0,0003
3,78 0,9999 0,0003
3,79 0,9999 0,0003
3,80 0,9999 0,0003
3,81 0,9999 0,0003
3,82 0,9999 0,0003
3,83 0,9999 0,0003
3,84 0,9999 0,0003
3,85 0,9999 0,0002
3,86 0,9999 0,0002
3,87 0,9999 0,0002
3,88 0,9999 0,0002
3,89 0,9999 0,0002
3,90 1,0000 0,0002
3,91 1,0000 0,0002
3,92 1,0000 0,0002
3,93 1,0000 0,0002
3,94 1,0000 0,0002
3,95 1,0000 0,0002
3,96 1,0000 0,0002
3,97 1,0000 0,0002
3,98 1,0000 0,0001
3,99 1,0000 0,0001

 

Standarddiagram för normalfördelning (över noll)

 

 

 


Se även

Advertising

 

 

SANNLIKHET & STATISTIK
SNABBBORD